Chancen und Risiken beim Einsatz von generativer KI
Generative KI-Modelle können komplexe und kreative Aufgaben wie das Erstellen von Bildern, Musik, Texten, Video und Programmcode übernehmen. Dazu lernen sie aus Daten und Mustern. Diese Fähigkeit macht sie zu einem wertvollen Instrument für die Digitalisierung, bringt jedoch auch neue IT-Sicherheitsrisiken mit sich.
Unternehmen und Behörden, die generative KI nutzen möchten, sollten daher eine gründliche Risikoanalyse durchführen und Sicherheitsmassnahmen entsprechend umsetzen. Auch gilt es Regeln und Richtlinien für die Anwendenden zu erstellen sowie die Arbeit mit KI-Tools in bestehende Arbeitsabläufe zu integrieren. Des Weiteren wird empfohlen, Mitarbeitende und Führungskräfte für die Anwendung von KI-Software zu schulen.
Chancen der generativen KI für Unternehmen
Verbesserung der Geschäftsprozesse
Generative KI kann dazu beitragen, eine Vielzahl von Geschäftsprozessen zu automatisieren und zu verbessern. Beispielsweise können Unternehmen ihre Kommunikation effizienter gestalten, wenn sie hilfreiche KI-Tools zur Textgenerierung nutzen. Dies reicht von der automatischen Erstellung von Kundenkorrespondenz bis hin zur Erzeugung von Berichten, Analysen und Blog-Artikeln.
Innovation und Produktentwicklung
Die Fähigkeit der generativen KI, neue Inhalte zu erstellen, öffnet Türen für Innovationen in verschiedenen Bereichen. Dabei kann die KI in der Produktentwicklung helfen, Designprozesse zu beschleunigen oder neue Ideen für Produkte zu entwickeln. Dazu werden existierende Daten verwendet, um etwas Neues zu erschaffen.
IT-Sicherheit und Compliance
LLM können in die eigene IT-Infrastruktur integriert werden, um Nutzende zu unterstützen. Dabei können sie mithilfe von Erklärungen und Beispielen das Verständnis für Schwachstellen und Bedrohungen bei den Anwendenden fördern. Des Weiteren können generative KI-Modelle dazu beitragen, Sicherheitsprotokolle zu stärken. Sie sind in der Lage, Sicherheitsberichte zu generieren, verdächtige Aktivitäten zu erkennen und sogar Empfehlungen für Sicherheitsverbesserungen zu geben. Dies erhöht nicht nur die Effizienz der Sicherheitsteams, sondern auch die allgemeine Sicherheit der IT-Infrastruktur.
Risiken der generativen KI für Unternehmen
Obwohl LLMs beeindruckende Ergebnisse liefern, stehen sie auch vor Herausforderungen wie Bias (Verzerrungen) in den Trainingsdaten. Diese können zu ungewollten Diskriminierungen und einseitigen Meinungen führen. Des Weiteren haben sie Schwierigkeiten, die Korrektheit der generierten Inhalte zu garantieren. Andererseits stehen solche Modelle noch in den Kinderschuhen und werden kontinuierlich weiterentwickelt. Dabei ist das Ziel, die Modelle sicherer, zuverlässiger und ethisch verantwortbarer zu gestalten.
Bei den Risiken von generativer KI bei Unternehmen sieht das BSI drei Kategorien:
- Risiken im Rahmen der ordnungsgemässen Nutzung
- Risiken durch eine missbräuchliche Nutzung
- Risiken infolge von Angriffen
Fehlinterpretationen und Fehler
Es gibt keine Garantie dafür, dass die generierten Inhalte immer korrekt oder angemessen sind. Das liegt an der Art und Weise, wie LLM lernen und Texte generieren. Denn aufgrund des stochastischen Prozesses (Zufallsprozesses), wie LLMs Texte generieren, kann es zu fehlerhaften Ausgaben kommen. Einen zusätzlichen Einfluss auf das Ergebnis hat das Trainieren des Modells und der verwendeten Daten. Problematisch wird es dann, wenn das KI-Tool keinen Zugriff auf Echtzeitdaten hat. Eine weitere Verfälschung kann es geben, wenn gewisse gleichartige Daten zu häufig für das Training verwendet werden. Dies kann repetitive, einseitige oder zusammenhanglose Ausgaben ergeben.
Datenschutz und Sicherheit
Generative KI-Modelle, insbesondere solche, die als Dienst über das Internet angeboten werden, bergen erhebliche Datenschutz- und Sicherheitsrisiken. Beispielsweise besteht die Gefahr, dass sensible Daten während der Übertragung abgefangen werden. Zudem könnten Anbieter von solchen KI-Tools die eingegebenen Daten für unerwünschte Zwecke verwenden.
Kontrolle und Missbrauch
Die Nutzung generativer KI birgt das Risiko des Missbrauchs. So können KI-Modelle zur Erstellung von täuschend echtem Fake Content verwendet werden. Dabei geht es nicht nur um Urheberrechte, sondern auch um die Fälschung von Fotos, Videos oder Stimmen von echten Menschen. Ferner können solche KI-Tools für illegale Vorhaben verwendet werden, indem sie dafür eine Anleitung oder Wissen zur Verfügung stellen. Deshalb müssen Entwickelnde und Unternehmen als Verwender sicherstellen, dass der Einsatz von KI im Einklang mit ethischen Richtlinien und gesetzlichen Vorgaben steht.
Ausserdem bietet die hohe Verfügbarkeit von LLMs mittels einer API (Schnittstelle) eine Vielzahl an Texten zu generieren. Dies birgt das Risiko, Falschmeldungen in Massen zu publizieren, um so eine öffentliche Meinung zu beeinflussen.
Ein weiteres Beispiel für den Missbrauch von KI-Modellen ist die Generierung und Verbesserung von Malware und weiteren Schadcodes. Diese können auch mithilfe von LLM in frei verfügbare Programmcodes in öffentlichen Programmbibliotheken integriert werden.
Angriffe
Nicht nur können LLM zur IT-Sicherheit beitragen, sie können diese auch angreifen und schädigen. Darunter zählen «Privacy Attacks», «Evasion Attacks» und «Poisoning Attacks». Bei einer Privacy-Attacke wird versucht, an Informationen der Trainingsdaten oder des Modells zu kommen. Auch ist es möglich, mit einem LLM ein anderes LLM anzugreifen, um an die Trainingsdaten zu gelangen. Dabei werden vom angreifenden LLM unzählige und spezifische Abfragen generiert.
Bei der Evasion-Attacke geht es darum, das Antwortverhalten eines LLM gezielt zu manipulieren oder Schutzmechanismen zu umgehen. Dies kann mit dem Verändern einer Eingabe mittels Sonderzeichen, Schreibfehlern oder seltenen Synonymen erreicht werden. Zudem können irreführende Anweisungen oder Falschinformationen dafür verwendet werden, um eine gewünschte falsche Ausgabe zu generieren.
Mit einer Poisoning Attacke wird das Ziel verfolgt, eine Fehlfunktion oder Leistungsverschlechterung zu verursachen. Dies kann mittels Auslösen eines Triggers durch eine definierte Eingabe bewerkstelligt werden. Andererseits können für eine Poisoning Attacke auch öffentlich verfügbare Trainingsdaten oder Programmiercodes für das LLM manipuliert werden. Auch können Entwickelnde eines LLMs selbst einen Trigger für die Auslösung einer Fehlfunktion einbauen. Dies wird als «Backdoor Attack» bezeichnet.
Abhängigkeit von Technologieanbietern
Der Einsatz von KI-Modellen führt oft zu einer Abhängigkeit von den Anbietern dieser Technologien. Das kann bei Änderung des Angebots, der Nutzungsbedingungen oder bei Serviceausfällen erhebliche Auswirkungen auf die eigene Geschäftstätigkeit haben. Des Weiteren kann häufig wie bei SaaS-Produkten keinen Einfluss auf die Entwicklung und Weiterentwicklung genommen werden.
Gegenmassnahmen
Die Risiken beim Einsatz von generativer KI in Unternehmen können durch eine Kombination aus technischen und organisatorischen Massnahmen gemindert werden. Diese Gegenmassnahmen richten sich an verschiedene Beteiligte wie Nutzende, Entwickelnde und Betreibende von LLMs.
Zu den empfohlenen Sicherheitspraktiken gehören die Verwaltung von Zugriffsrechten, die Nutzung von kryptografischen Signaturverfahren und die Beachtung etablierter Sicherheitsstandards. Des Weiteren gibt es unzählige Gegenmassnahmen mit speziellem LLM-Bezug oder dem dazugehörigen KI-Tool und IT-Infrastruktur.
Das BSI hat für die sichere Verwendung von generativen KI-Tools bzw. LLMs einen Katalog mit 19 Massnahmen definiert. Dabei geht es um interne Schulungen, Risikobewertungen, alles um Trainingsdaten, Schutz und Sicherheit, Testing, Auswahl der Infrastruktur bzw. LLMs sowie Zugriffs- und Rechte-Verwaltung. Diese Gegenmassnahmen sind etwas ausführlicher im genannten Dokument als Download beschrieben.
Fazit
Die Integration von generativer KI in Unternehmen bietet zahlreiche Chancen, bringt aber auch Risiken mit sich. Einerseits kann dadurch die Kreativität, Effizienz und Effektivität gesteigert werden. Das führt zu einer neuen Ära der Content-Erstellung und Prozessautomatisierungen, die bisher unerreicht blieben.
Jedoch müssen Unternehmen, die generative Künstliche Intelligenz nutzen, sich mit den damit verbundenen Risiken auseinandersetzen. Dabei spielen Datenschutz, Sicherheit und ethische Überlegungen eine zentrale Rolle, wenn ein Unternehmen KI einsetzt. Eine sorgfältige Bewertung der Risiken und eine strategische Planung sind daher unerlässlich, um das volle Potenzial der generativen KI zu nutzen. Mit dem richtigen Ansatz kann generative KI zu einem mächtigen Werkzeug werden, das nicht nur die Innovationsfähigkeit steigert, sondern auch nachhaltigen geschäftlichen Erfolg sichert.
Download Deutsch: Generative KI-Modelle – Chancen und Risiken für Industrie und Behörden
Download English: Generative AI Models – Opportunities and Risks for Industry and Authorities